Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.133
Filtrar
1.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299857

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
2.
Vet Res Commun ; 48(2): 1135-1147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191818

RESUMO

The polyspermy occurrence is considerably lower under in vivo compared to in vitro embryo culture conditions, suggesting that the presence of some factors in the maternal environment is responsible for this. The α-L-fucosidase (FUCA) is a natural glycosidase present in the oviductal fluid, therefore, this study aimed at investigating the effect of adding FUCA to the hardening of the zona pellucida (ZP), polyspermy control, and embryonic yield and quality of bovine blastocysts produced in vitro. In the first experiment, the effect of FUCA (0.125 U/mL) was evaluated during the entire in vitro fertilization (IVF). However, it was demonstrated to be embryotoxic by completely inhibiting the blastocyst formation. In the second experiment, the FUCA (0.125 U/mL) was tested as short-term incubation before IVF (pre-fertilization step) for 30 min or 2 h, which demonstrated that FUCA treatment for 30 min resulted in ZP hardening. In the third experiment, a pre-fertilization FUCA treatment (1 h) at different concentrations (0, 0.0625, and 0.125 U/mL) showed that FUCA (0.0625 U/mL) improved pre-fertilization ZP hardening and tended to increase monospermic fertilization rates but did not improve embryo yield and quality. Together, it has been demonstrated that FUCA can induce oocyte pre-fertilization ZP hardening and might improve monospermic fertilization performance, and this effect is dependent on both variables (protein concentration and incubation time).


Assuntos
Zona Pelúcida , alfa-L-Fucosidase , Bovinos , Animais , alfa-L-Fucosidase/farmacologia , Oócitos , Fertilização In Vitro/veterinária , Fertilização In Vitro/métodos , Fertilização
3.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255883

RESUMO

In various life forms, fucose-containing glycans play vital roles in immune recognition, developmental processes, plant immunity, and host-microbe interactions. Together with glucose, galactose, N-acetylglucosamine, and sialic acid, fucose is a significant component of human milk oligosaccharides (HMOs). Fucosylated HMOs benefit infants by acting as prebiotics, preventing pathogen attachment, and potentially protecting against infections, including HIV. Although the need for fucosylated derivatives is clear, their availability is limited. Therefore, synthesis methods for various fucosylated oligosaccharides are explored, employing enzymatic approaches and α-L-fucosidases. This work aimed to characterise α-L-fucosidases identified in an alpaca faeces metagenome. Based on bioinformatic analyses, they were confirmed as members of the GH29A subfamily. The recombinant α-L-fucosidases were expressed in Escherichia coli and showed hydrolytic activity towards p-nitrophenyl-α-L-fucopyranoside and 2'-fucosyllactose. Furthermore, the enzymes' biochemical properties and kinetic characteristics were also determined. All four α-L-fucosidases could catalyse transfucosylation using a broad diversity of fucosyl acceptor substrates, including lactose, maltotriose, L-serine, and L-threonine. The results contribute insights into the potential use of α-L-fucosidases for synthesising fucosylated amino acids.


Assuntos
Camelídeos Americanos , Lactente , Animais , Humanos , Fucose , Metagenoma , alfa-L-Fucosidase/genética , Escherichia coli/genética , Fezes , Lactose
4.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511315

RESUMO

2'-fucosyllactose (2'FL) is an important nutrient in human milk that stimulates beneficial microbiota and prevents infection. α-L-fucosidase is a promising component for 2'FL synthesis. In this study, a soil-oriented α-L-fucosidase-producing strain from Enterococcus gallinarum ZS1 was isolated. Escherichia coli was employed as a host for cloning and expressing the α-L-fucosidase gene (entfuc). The EntFuc was predicted as a member of the GH29 family with a molecular mass of 58 kDa. The optimal pH and temperature for the activity of EntFuc were pH 7.0 and 30 °C, respectively. The enzyme exhibited a strictly specific activity for 4-Nitrophenyl-α-L-fucopyranoside (pNP-Fuc) and had a negligible effect on hydrolyzing 2'FL. EntFuc could catalyze the synthesis of 2'FL via transfucosylation action from pNP-Fuc and lactose. The yield of 2'FL reached 35% under optimal conditions. This study indicated that EntFuc with a high conversion rate is a promising enzyme source for the biosynthesis of 2'FL.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Humanos , alfa-L-Fucosidase/genética , Trissacarídeos , Leite Humano/química , Escherichia coli
5.
Gut Microbes ; 15(1): 2207455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188713

RESUMO

Bifidobacteria are prominent members of the human gut microbiota throughout life. The ability to utilize milk- and plant-derived carbohydrates is important for bifidobacterial colonization of the infant and adult gut. The Bifidobacterium catenulatum subspecies kashiwanohense (B. kashiwanohense) was originally isolated from infant feces. However, only a few strains have been described, and the characteristics of this subspecies have been poorly investigated. Here, we characterized genotypes and phenotypes of 23 B. kashiwanohense-associated strains, including 12 newly sequenced isolates. Genome-based analysis clarified the phylogenetic relationship between these strains, revealing that only 13 strains are genuine B. kashiwanohense. We defined specific marker sequences and investigated the worldwide prevalence of B. kashiwanohense based on metagenome data. This revealed that not only infants but also adults and weaning children harbor this subspecies in the gut. Most B. kashiwanohense strains utilize long-chain xylans and possess genes for extracellular xylanase (GH10), arabinofuranosidase and xylosidase (GH43), and ABC transporters that contribute to the utilization of xylan-derived oligosaccharides. We also confirmed that B. kashiwanohense strains utilize short- and long-chain human milk oligosaccharides and possess genes for fucosidase (GH95 and GH29) and specific ABC transporter substrate-binding proteins that contribute to the utilization of a wide range of human milk oligosaccharides. Collectively, we found that B. kashiwanohense strains utilize both plant- and milk-derived carbohydrates and identified key genetic factors that allow them to assimilate various carbohydrates.


Assuntos
Microbioma Gastrointestinal , Lactente , Criança , Humanos , Filogenia , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo
6.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115252

RESUMO

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Assuntos
Malus , Pedobacter , Lactente , Humanos , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Malus/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
7.
Glycobiology ; 33(5): 396-410, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014745

RESUMO

Glycoside hydrolase family 29 (GH29) encompasses α-L-fucosidases, i.e. enzymes that catalyze the hydrolytic release of fucose from fucosylated glycans, including N- and O-linked glycans on proteins, and these α-L-fucosidases clearly play important roles in biology. GH29 enzymes work via a retaining exo-action mechanism, and some can catalyze transfucosylation. There is no formal subfamily division of GH29 α-L-fucosidases, but they are nonetheless divided into two subfamilies: GH29A having a range of substrate specificities and GH29B having narrower substrate specificity. However, the sequence traits that determine the substrate specificity and transglycosylation ability of GH29 enzymes are not well characterized. Here, we present a new functional map of family GH29 members based on peptide-motif clustering via CUPP (conserved unique peptide patterns) and compare the substrate specificity and transglycosylation activity of 21 representative α-L-fucosidases across the 53 CUPP groups identified. The 21 enzymes exhibited different enzymatic rates on 8 test substrates, CNP-Fuc, 2'FL, 3FL, Lewisa, Lewisx, Fuc-α1,6-GlcNAc, Fuc-α1,3-GlcNAc, and Fuc-α1,4-GlcNAc. Certain CUPP groups clearly harbored a particular type of enzymes, e.g. the majority of the enzymes having activity on Lewisa or Lewisx categorized in the same CUPP clusters. In general, CUPP was useful for resolving GH29 into functional diversity subgroups when considering hydrolytic activity. In contrast, the transglycosylation capacity of GH29 α-L-fucosidases was distributed across a range of CUPP groups. Transglycosylation thus appears to be a common trait among these enzymes and not readily predicted from sequence comparison.


Assuntos
Polissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/metabolismo , Especificidade por Substrato , Fucose/química
8.
Nat Commun ; 14(1): 1833, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005422

RESUMO

The mucolytic human gut microbiota specialist Akkermansia muciniphila is proposed to boost mucin-secretion by the host, thereby being a key player in mucus turnover. Mucin glycan utilization requires the removal of protective caps, notably fucose and sialic acid, but the enzymatic details of this process remain largely unknown. Here, we describe the specificities of ten A. muciniphila glycoside hydrolases, which collectively remove all known sialyl and fucosyl mucin caps including those on double-sulfated epitopes. Structural analyses revealed an unprecedented fucosidase modular arrangement and explained the sialyl T-antigen specificity of a sialidase of a previously unknown family. Cell-attached sialidases and fucosidases displayed mucin-binding and their inhibition abolished growth of A. muciniphila on mucin. Remarkably, neither the sialic acid nor fucose contributed to A. muciniphila growth, but instead promoted butyrate production by co-cultured Clostridia. This study brings unprecedented mechanistic insight into the initiation of mucin O-glycan degradation by A. muciniphila and nutrient sharing between mucus-associated bacteria.


Assuntos
Mucinas , Neuraminidase , Humanos , Mucinas/metabolismo , Neuraminidase/metabolismo , alfa-L-Fucosidase/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fucose/metabolismo , Verrucomicrobia/metabolismo , Polissacarídeos/metabolismo , Muco/metabolismo
10.
Essays Biochem ; 67(3): 399-414, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805644

RESUMO

Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (ß/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel ß-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Animais , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Oligossacarídeos/química , Fucose/química , Especificidade por Substrato , Mamíferos/metabolismo
11.
Enzyme Microb Technol ; 165: 110196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657310

RESUMO

Human milk oligosaccharides (HMOs) denote specific glycans in human breast milk. They function as prebiotics, immune modulating, and antimicrobial agents in the gut of breastfed infants, and certain HMOs even promote the cognitive development of the baby. HMOs are virtually absent in cow's milk and hence in infant formula, which provides a huge incentive for identifying ways in which HMOs can be produced to improve infant formulas. Here, we show that different sialylated and fucosylated HMOs can be generated in cow's milk via different simultaneous enzymatic transglycosylation reactions catalyzed by an engineered sialidase (EC 3.2.1.18, from Trypanosoma rangeli) and an 1,2-α-L-fucosidase (EC 3.2.1.63, from Tannerella forsinthia) acting on the lactose in the milk and on casein glycomacropeptide, two types of commercially available HMOs, i.e. 2'-fucosyllactose and lacto-N-neotetraose, added to the milk. We also outline the details of the individual reactions in aqueous systems, demonstrate that the enzymatic reactions can be accomplished at 5 °C, and validate the products formed by LC-MS and NMR analysis. Enzymatic production of HMOs directly in milk provides opportunities for enriching milk and infant formulas and extends the use of enzymatic transglycosylation reactions to synthesis of HMOs in milk and eventually in other beverages.


Assuntos
Leite Humano , Oligossacarídeos , Feminino , Animais , Bovinos , Humanos , Leite Humano/química , Oligossacarídeos/química , Polissacarídeos/análise , Glicosilação , alfa-L-Fucosidase/metabolismo
12.
Biochem Biophys Res Commun ; 645: 40-46, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36680935

RESUMO

Up to date, the reported fucosidases generally show poor activities toward the IgG core-fucose, which limits the efficiency of ENGase-catalyzed glycoengineering process. However, EndoS or EndoS2 owns excellent activity and great selectivity towards the N-glycosylation of IgGs, and their non-catalytic domains are deduced to have specific interactions to IgG Fc domain that result in the great activity and selectivity. Herein, we constructed a series fusion protein of AlfC (an α-l-fucosidase from Lactobacillus casei BL23) with EndoS/S2 non-catalytic domain by replacing the catalytic GH (glycan hydrolase) domain of EndoS/S2 with the AlfC. We found that all these fused AlfCs showed significantly enhanced defucosylation activity toward the deglycosylated IgGs (Fucα1,6GlcNAc-IgG). We also performed the kinetic study of these fusion enzymes, and our results tend to tell that the EndoS-based fusion proteins have higher kcat values while the EndoS2-based ones possess lower Km values other than higher kcat. Conclusively, our research provides an effective approach to improve the activity of AlfC and remarkably shortened the defucosylation process within several minutes, which will significantly promote the development of glycoengineered antibodies in the future.


Assuntos
Polissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Polissacarídeos/metabolismo , Anticorpos Monoclonais , Imunoglobulina G/metabolismo
13.
Folia Histochem Cytobiol ; 60(4): 335-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583336

RESUMO

INTRODUCTION: Aberrant fucosylation is closely related to malignant transformation, cancer detection, and evaluation of treatment efficacy. The fucosylation process requires GDP-L-fucose, fucosyltransferases, and fucosidases. In gastric cancer (GC), fucosylation alterations were associated with tumor formation, metastasis inhibition, and multi-drug resistance. It is not clear whether tissue-specific transplantation antigen P35B (TSTA3) and alpha-L-fucosidase 2 (FUCA2) have any effect on the development of GC. MATERIALS AND METHODS: We used immunohistochemistry to assess the expression of TSTA3 and FUCA2 in 71 gastric adenocarcinoma samples and their relationship with clinicopathological parameters. RESULTS: TSTA3 expression was associated with lower histological grade I and II (P = 0.0120) and intestinal type Lauren classification (P = 0.0120). TSTA3 immunopositivity could predict Lauren's classification. Analysis of mRNA expression in GC validation cohorts corroborates the significant TSTA3 association with histological grade observed in our study. However, no associations were found between TSTA3 staining and overall survival. FUCA2 expression was markedly increased in GC tissues compared with non-tumoral tissues (P < 0.0001) and was associated with surgical staging III and IV (P = 0.0417) and advanced histological grade tumor states (P = 0.0125). CONCLUSIONS: Alterations of FUCA2 and TSAT3 immunoexpression could lay the basis for future studies using cell glycosylation as a biomarker for the planning of therapeutic strategy in primary gastric cancer.


Assuntos
Adenocarcinoma , Cetona Oxirredutases , Neoplasias Gástricas , Humanos , alfa-L-Fucosidase/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Biomarcadores , Biomarcadores Tumorais , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo
14.
Appl Microbiol Biotechnol ; 106(24): 8067-8077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370158

RESUMO

This study describes the molecular identification, biochemical characterization, and stabilization of three recombinant AlfA, AlfB, and AlfC fucosidases from Lacticaseibacillus rhamnosus INIA P603. Even though previous studies revealed the presence of fucosidase activity in L. rhamnosus extracts, the identification of the fucosidases, their physicochemical properties, and the substrate spectrum remained unknown. Although the presence of alfB is not common in strains of L. rhamnosus, fucosidases from L. rhamnosus INIA P603 were selected because this strain exhibited higher fucosidase activity in culture and the complete set of fucosidases. A high yield of purified recombinant AlfA, AlfB, and AlfC fucosidases was obtained (8, 12, and 18 mg, respectively). AlfA, AlfB, and AlfC showed their optimal activities at pH 5.0 and 4.0 at 60 °C, 40 °C, and 50 °C, respectively. Unlike 3-fucosyllactose, all three recombinant fucosidases were able to hydrolyze 2'-fucosyllactose (2'-FL), and their activities were improved through their immobilization on agarose supports. Nevertheless, immobilized AlfB exhibited the highest hydrolysis, releasing 39.6 µmol of fucose mg enzyme-1 min-1. Only the immobilized AlfB was able to synthetize 2'-FL. In conclusion, the enzymatic properties elucidated in this study support the potential ability of fucosidases from L. rhamnosus INIA P603 to hydrolyze fucosylated substrates as well as justifying interest for further research into AlfB for its application to catalyze the synthesis of fucosylated prebiotics. KEY POINTS: • Few strains of L. rhamnosus exhibited alfB on their chromosomes. • Fucosidases from L. rhamnosus INIA P603 were characterized and stabilized. • Although all the fucosidases hydrolyzed 2'-FL, only AlfB transfucosylated lactose.


Assuntos
Lacticaseibacillus rhamnosus , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , Lacticaseibacillus
15.
Structure ; 30(10): 1369-1371, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206736

RESUMO

In this issue of Structure, Armstrong and colleagues probe the structure of human fucosidase FucA1. Their work resolves an ongoing debate around the enzyme's catalytic mechanism and provides a valid structural template to guide the design of drugs alleviating the rare, yet severe, lysosomal storage disease fucosidosis.


Assuntos
Fucosidose , Humanos , alfa-L-Fucosidase
16.
Cell Host Microbe ; 30(10): 1417-1434.e8, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150396

RESUMO

Interactions between the enteric nervous system (ENS) and intestinal epithelium are thought to play a vital role in intestinal homeostasis. How the ENS monitors the frontier with commensal and pathogenic microbes while maintaining epithelial function remains unclear. Here, by combining subdiaphragmatic vagotomy with transcriptomics, chemogenetic strategy, and coculture of enteric neuron-intestinal organoid, we show that enteric neurons expressing VIP shape the α1,2-fucosylation of intestinal epithelial cells (IECs). Mechanistically, neuropeptide VIP activates fut2 expression via the Erk1/2-c-Fos pathway through the VIPR1 receptor on IECs. We further demonstrate that perturbation of enteric neurons leads to gut dysbiosis through α1,2-fucosylation in the steady state and results in increased susceptibility to alcohol-associated liver disease (ALD). This was attributed to an imbalance between beneficial Bifidobacterium and opportunistic pathogenic Enterococcus faecalis in ALD. In addition, Bifidobacterium α1,2-fucosidase may promote Bifidobacterium adhesion to the mucosal surface, which restricts Enterococcus faecalis overgrowth and prevents ALD progression.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Bifidobacterium , Enterococcus faecalis , Epitélio , Homeostase , Neurônios , alfa-L-Fucosidase
17.
Turk J Pediatr ; 64(4): 795-803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082656

RESUMO

BACKGROUND: Fucosidosis is a rare, autosomal recessive lysosomal storage disease caused by alpha L- fucosidase enzyme deficiency in all tissues. Here, we identify a patient with a novel homozygous pathogenic variant and atypical clinical findings and summarized the clinical and molecular features of Turkish patients reported in the literature and present. CASE: The patient was born to consangineous parents at the 28th week of gestation. He had developmental delay that was attributed to prematurity. At he age of 2.5 years, brain magnetic resonans imaging revealed hyperintensities of symmetrical periventricular, subcortical, centrum semiovale and corona radiata regions on T2 and FLAIR weighted images. He developed seizures and showed developmental regression at he age of 3,5 years. Beside, coarse facial features and hepatomegaly were detected on phsyical examination. Lysosomal enzyme analysis revelaed alfa fucosidase deficiency and molecular genetic analysis identified a novel homozygous pathogenic p. Lys431 fs variant in FUCA1 gene. CONCLUSIONS: In Turkish patients no distinguishable clinical and radiologic finding could be established. Molecular analysis was performed in few patients. Increasing of molecular and biochemical facilities might enable to make diagnosis and increase the prevalence of the disease in countries with high rate of consanguineous marriages. Moreover, it will provide genetic counseling, and enlighten the therapeutic effects of hematopoietic stem cell transplantation.


Assuntos
Fucosidose , Encéfalo/patologia , Pré-Escolar , Fucosidose/diagnóstico , Fucosidose/genética , Fucosidose/terapia , Homozigoto , Humanos , Masculino , alfa-L-Fucosidase/genética
18.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943155

RESUMO

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Animais , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/metabolismo , Fucose/análise , Fucose/química , Fucose/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Lactente , Recém-Nascido , Mamíferos/genética , Mamíferos/metabolismo , Metagenoma , Leite Humano/química , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
19.
Arch Biochem Biophys ; 728: 109373, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940339

RESUMO

In present work we provide the bioinformatic and biochemical characterization of six α-L-fucosidases that belong to the 29 and 95 families of glycoside hydrolases (GH) from the fucoidan-degrading locus of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The fucosidases FucWf1GH29, FucWf2GH29, FucWf3GH29 and FucWf6GH29 are relegated to the subfamily A of the GH29 family. The fucosidase FucWf4GH29 bears a distant resemblance to the GH29 and does not belong to either the GH29A or the GH29B subfamilies. Apparently, FucWf4GH29 is the first representative of a new subfamily within the GH29 family of α-L-fucosidases. For the first time the specificity of fucosidases has been studied using a series of fucoidan-related sulfated oligosaccharides. Studied α-L-fucosidases are able to cleave l-fucose from sulfated fucooligosacchrides after their treatment with exo-sulfatases. All studied α-L-fucosidases are cleaving the α-1→3- and α-1→4-linked terminal l-fucose in sulfated fucooligosaccharides. However, only FucWf3GH29 is able to cleave off an α-1→2-linked l-fucose. The fucosidase FucWf5GH95 of the GH95 family is shown to have higher activity on fucoidans than fucosidases of the GH29 family. Supposedly, the α-l-fucosidase FucWf5GH95 participates in fucoidan debranching. The obtained data indicate different roles of fucosidases of the GH29 and GH95 families in the process of fucoidan degradation by the marine bacteria W. fucanilytica CZ1127T.


Assuntos
Flavobacteriaceae , alfa-L-Fucosidase , Fucose , Polissacarídeos , Especificidade por Substrato
20.
Biosci Biotechnol Biochem ; 86(10): 1413-1416, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867865

RESUMO

Deletion of α-1,3/4-fucosidase activity in Arabidopsis thaliana resulted in the accumulation of GN1-type free N-glycans with the Lewis a epitope (GN1-FNG). This suggests that the release of α-fucose residue(s) may trigger rapid degradation of the plant complex-type (PCT) GN1-FNG. The fact that PCT-GN1-FNG has rarely been detected to date is probably due to its easier degradation compared with PCT-GN2-FNG.


Assuntos
Arabidopsis , alfa-L-Fucosidase , Arabidopsis/genética , Arabidopsis/metabolismo , Epitopos , Fucose/química , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...